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OPTIMUM INTERCEPTION OF A' BALLISTIC MISSILE AT MODERATE RANGE 

■ I 

The problem of Intercepting a ballistic missile optimally 

at moderate renge !• diiouased in this report. The problems 

of, minimum time and minimum fuel consumption are discussed 

specifioally. A procedure is given for determining the trajec- 

tory on ä digital computer, and some necessary and sufficient 

conditions are given for the corresponding optima. 

The computational procedure is a method of successive , 

approximations. The simpler cases have been checked out on the 

digital computer and further programming Is under way. In the 

examples run, each iteration takes somewhat less than one second 

computing time on the CDC 160^. From three to six iterations 

are usually required to determine a trajectory, so that the tra- 

jectory is determined In five seconds or so. 

The variatlonal equations which are used to determine the 

trajectory can also be used to determine the corrective thrust 

should the actual trajectory deviate slightly from the planned 

trajectory. 

The following simplifying assumptions are made. The speed 

c' of the emitted gases of the rocket Is assumed to be a constant 

of the rocket. The action takes place above the sensible atmos- 

phere so that aerodynamic forces are negligible. The particu- 

lar cases are considered wherein the range of the action is 

small enough that gravity is constant during the flight or can 

be approximated as a linear function of displacement; the case 

of central body motion is also discussed very briefly. Much , 

of the paper is restricted to the case of plane motion, where 

the motion of the rocket and the target lie in a, properly defined 

plane. This is for simplicity in programming and not a restrlc- 

tion on the method. Most of the procedure is elementary and 

hence the paper is somewhat expository. 



2. Basic equations 
The equa':• 1 on taf rr.otlo;;: c-f a rocket in a gravitational 

field and with no outsxac icrces may be written as 

(1) r m    g + a, 

wViere r is the position vector, g Is the acceleration due 

to gravity, a is the acceleration due to thrust, and a dot 

(*) over a variable indicates Its time derivative. We may 

write 

(2) _ a = - c'm/d - m) e , 

where m is the ratio of the mass pf €uel whiph has been 

consumed to the initial gross mass of the rocket anfl e is a 

unit vector in the direction of the thrust« 

A useful kinematic relation is the following, 

(3) f a dt = c« f |4l5  = -o' Ind-ro) . 

Since the fuel consumed is proportional to m and In(l-m) 

is a monotonic function of m, conditions involving the final 

value of mass may be rephrased In terms of the integral of the ^.«^ 

adceleration, subject to the constraints on the size of m.,,^' 

For practical purposes we may take m as being bounded above 

"by a constant, and bounded below by zero, apd it may be chosen 

anywhere between or on these bounds as long as any fuel remains. 

Integrated form of the equations of motion. For the case 

where gravity may be considered constant, the equations of motion 

may be written 

(x    = a cos p 
(4) {"      -     \ ' \y = a sin p - g 

for two-dimensional motion, with the y axis vertical,. If 

gravity may be satisfactorily approximated by a linear function, 

of the displacement, these become ; •' 

■    . i       2 
( X    m    -b x + a cos p r 

(5) . L     2 ' 
Ay -   +B y + a sin p -= g , 

where g is the gravitational accelei'ation at the origin ' 

of ooordinates, b2 « g/r-, , with rF the distance from the 

:iji>' 
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2     2 
origin of coordir."'    ;..o the ■,p.arth: ä CöUL . ^.rd B •= 2 b . 

The correcponding -V'.-^/aostnent may be expressed at any 

time T as 

.  fT      . .   • 
' /x(T) » x0 + x0T +   (T-t) a oos p dt 

(6) ^     -PT 
ly(t) - y0 + y0T - gT2/2 +   (Ttt) a sin p dt 

and 

(7) 

0 

oc(T) = xnC08 bT + 
x0 sin bT + i| a sin b(T-t) oos p dt 

^y(T) - (y0+-|)cosh BT + (y0/B)slnh BT - g/B
2 

B 
fT 

+V(1/B)  a slnh B(T-t) sin p dt. 
j0 

3. Extremals. 

The curves which correspond to optimum motion from one 

point to another are called extremals. They may be charac- 

terized for the case where the velocity does not enter in the 

terminal conditions (and If gravity is linear, for T <n/Zb). 

as follows. 
First, the thrust must be a maximum for a properLy chosen 

Initial period, and zero thereafter. This Is a consequence of 

the fact that the coefficient of a cos p and a sin p In 

equations (6) and (?) diminish with time, 

Second, the direction of the thrust Is given'by 

(8) tan p = c , 

?^      4.       „ (1/B) slnh B(T-t) 
(9) ,   tanp = ,c jx/b) sinb(T-t)  « 

accordingly as the equations of motion are taken as {k)  or (5). 

Equation (8) or (9) is called the steering equation. 

An elementary proof Is given In section (5)       to 

show that these conditions are sufficient to describe an ex- 

tremal, and henceforth only trajectories wherein the thrust 

satisfies these conditions will be consider^, 



4- 
The  equal ion 

(6)  and .{?)  V.'_0.A 

I he 

etDlfif 

1   ly iOU r6ci<;it ab any  time 

(10) 

,x(T)   = xn + XAT +   i     i(T-t)   a oos  p dt 
u       u       Jo 

iy(T)   = y0 + y0T - gT2/2 +  j   1(T-t)  a sin p dt   , 

where    tan p = c, and 

^(T)   = XQOOB  bT +  {x0/b)   sin bT + 

(11) 
+ (l/b^)      •L(a/R)sln'ib(T-t)  dt , 

Jo 
ly(T)   =  (y0+ g/B2)cosh BT +(y0/BTslnhBT - g/B2 

+ (c/B2) 
rt 

1{a/R)Binh2B(TTt) dt  , 

where R = /(l/b)2sln2b(T-t) + {o/B)2slnh2B(T-t). , and ^ < T. 

the problem of determining an optimum trajeotory is then reduced 

to that of finding' o, t1, and T, since these characterize an 

extremal. 

h.  Differentials of extremals. 

Formulas are derived here for the changes In terminal 

values of the coordinates due to small changes In the parameters 

of the extremals. 

Let us consider novj two extremals, near together in the 

following sense. One extremal corresponds to a set of values 

. p.t-pT, and the other corresponds to a neighboring set p+6p, 

t-.+öt-i.T+eT, in equations (10). Then the resulting change in 

the terminal values of x and y are 

6X =  (x0 +' 
rt 
0 

rt 

■La cos p dt)6T +.[(T-t)a cos pjt bt1 

a sin p dt 6p 

(12) 

6Y = {y0 +   J     a sin p dt)6T +[(T-t)a sin p]t bt1 + 

  ,IIU„.^)I.WII. i..III.IL    I M I i ■  '    
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+ ;T--; -a 6p, 

for gravity constant if all initial values are specified. 
If the linear, approximation to the gravitational field is 

used, the equations for the variations are more Involved.  In 
the following equations let C,S,Ch,8ti denote cos b(T-t), 
sin b(T-t),cosh B(T-t),slnh B(T-t), respectively. Then 

H =-/(S/b)2+(c Sh/B)2, and 

(13r 

tT 2 2 
a(G08-?p C + 2 sin p cos p C - c cos p sin p Ch)dt 

- bx08ln bT + XQCOS bT]6T +  (aS2/Hb2)t 6t, 

rh I       J. n n 

pl    =.   [ 

-  (1/c) 

rt 

o 

a R sin p cos p dt 6c 

1 P T 1       2 
a(2 cos p sin p Oh + sln^p Ch - -Bin p cos p C)dt 

2/^2, 
+ (By0 + |)slnh BT + ^slnh BT]6T +  (ac Stl^/RB )t 6^ 

1 . 

? 2     2 + (l/c )  a R sin p cos p dt 6c , 

V    u. Ob Sh 
where tan P = f~ s- 

5, Fixed point In fixed time, with minimum fuel consumption. 
Let us now consider the problem of sending the rocket to 

:,,  the prescribed point X2!Y2 in specified time , T, with minimum 

fuel consumption. The initial values are all assumed to be 

given. The problem is that of finding the values of c,^ so 

. that x(T) = X2, y(T> = Y2. 
Suppose we guess Q pair of values for t1 and c (or p), 

and compute the corresponding trajectory. The end values will 

' not be correct generally; let the errors be 
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JE = X -^ X, 

IF = Y - Y2 . 

^6X = -E ■ 

(15)    { 
\f)Y = -F 

and use the formulas developed for 6X,6Y. Thei^ 

rh   - 
([(T-t)a cos p]. öt, -    (T-t) a sin D dt; 6p ^ -E 

[(T-t)a sin vl*.  6t, +    (T-t) a cos p dt 6p = -F 

for constant gravity, and for the linearized equations 

(aS2/Rb2)t bt^  - i 2     2      > 
aR sin p cos p dt 6c = -E 

0 ^ 
(17) r\ ^ 

Ma^/RB2). 6t, + ^   aH 8ln2p cos2p dt 6c = -F. 
^1 •L  o^ iO 

• t 

The values of 6p(or 6c), 6t, determined from this yield 

new values for p,t,. Using these, we compute a new trajec- 
2   2  ■ 

tory and correct, repeating    until EY + F-  is less than 

some preassigned value, a convergence prlterion. No convergence 

problems were encountered and a brief discussion of the results 

is given in section 9» 

' 6. Proof of minimum fuel consumption. A Mayer reciprocal 

relation. 

The proof is given here that the curve C* found in the' 

previous section has the lowest value for JQ a dt for admis- 

sible paths. An admissible path is one whereon the bounds on 

.. a are satisfied and the proper initial,and final Values are 

assumed. A corollary result Is the equivalence between problems 

of specified displacement with minimum fuel consumption and those 
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of specified fuel consumption and maximum displacement, etc.   ' 
known as Mayer reciproes-!. relations. 

The proof will be carried through for equations (5); the . 
proof for constant gravity is given In other reports already. 

Suppose we have found Cjt^,  In the previous section so that 
E,F are zero. Denote by an asterisk (*) the quantities on 

that path C* and by capital letters the corresponding quan- 

tities on any other admissible path. 
4 

If in equations (7) the second is multiplied by c and the 
two are added, the resulting equation may be rewritten, for any 

admissible path 
(18)  (X2 - x0co8 bT - ^Osln bT) + o[Y2 - .(y0+ ^)oo8h BT - 

b '     ß 

« 

- y0sinh BT + %] 
B" B^ 

CT ' 
aCrjS cos. p + |sh sin p]dt  . 

Now everything on the left side of this equation Is completely 
determined, either from the initial conditions and final con- 
ditions, or from c which has been found. Hence the right 
side is also determined. 

Now suppose there is another admissible path for which the 

fuel consumption does not exceed that on C*. Then 

(19) 

'Let 

(20) 

"T      TT TT 
A dt <   a*dt =   a*dt. 

0     "JQ       '0 

rh 
(a*-A)dt = D 

0 

Then, from (19) and (20) 
TT 

;1 

Now subtract the expressions obtained from (18) for the two paths. 

(21)      A dt < D. 
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1.        ' .« . 

(22)    T     a*(is cos p* + |ö^. sin p*)dt 

rT 
■Ir. A (^5 oos P + ~Sfl' sin P)dt ■ 0 

Now, from equation (9) 

(23) 

where 

S cos p* + §Sft sin p* = R, B 

R2 = (i)2S2 +(§)2Sfi2 

as defined earlier. Note that R Is a decreasing function of 
t for bT < ir/2, and H(T) = 0.  In view of this (22) may be 
rewritten 

ARcos{p*-P)dt (2^) I "L(a*-A)Rdt +   -^ARCI - cos(p*-P) ]dt - Jo        Jo 

Now 
0, 

rt. 

Jo 
(a*-A)R dt > Rit^) 

» r(t1)D 

(a*-A)dt 

AR cos(p*-P)dt < 
T 
ARdt 

< R(t1)  A dt 

.•■•'" tl 

< DR(t1) , 

so that the sum of the first and last Integrals in (2^-)is posi- 
tive or zero. The second integral is also clearly positive or 
zero. Inspection reveals further that the integrals In (2'4) 
have a sum which is not zero unless a* = A except on a set of 
measure zero. Hence the curve found in the preceding section 
leads to a minimum value for the fuel consumption for that value 
of T and Is unique. 
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M*y«r-roolproo«l relation.  Actually the trajectory C* Just 
found represents an optlnjuc illation among the set of variables 
x0,^0'x0'^0'^'^•'"z* For con8l(ier all by one 0^ these as being 
prescribed as on C*. For example, take all but x0 as having 
prescribed values. Let an admissible curve be one on which 

y0'x0'y0'X'Y,m2 assunie the values they assume on C*, with T 
fixed. 

Then x0 assumes Its minimum value on C* for admissible 
curves. 

To show this, let us consider equation (18) for the two 
curves. Everything on the left Is prescribed except the term 
Involving XQ. Hence 

ft,       ri 
(25) (-x* + Xn)cos bT =   

la*R  dt -   ARcos(p*-P)dt u   u        /Q JO 

Now the right side- of this equation Is positive unless A = a*, 

by the arguments given earlier In this section. Since 0 < bT 
< T"/2, x* < X0 unless A = a*. 

Similarly, If c Is positive, y0 Is a minimum If all the 
other quantities are fixed as on C*. We see that If all but 

■'one of the set Is fixed and If c Is positive, then C* defines 
a minimum for x0 ,y0pc0,y0,m2 and a maximum for x2,y2, ' 

, . This Is the Mayer-reciprocal relation among the set Just 
discussed o:. G*.  In some cases, T may be included in the set 
but generally it may not be. The Important concept In the Mayer- 
reciprocal relation is that an extremal furnishes not Just a 
maximum or a minimum for one variable but rather an optimum 

relation among a set of variables. Throughout the problems 
solved, in this paper, we seek a curve such as C* which satis" 
fies Just the specified conditions. 
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8. Interception in  minimi):" Unie for Incoming target. 

The problem of intercepting a ballistic missile In mlnlnium 

time Is solved here. The equations used are those for the case 

where gravity is constant. 
1   The relative motion of the missile and the target may be 

written, in a suitably chosen coordinate set as 

f* x0 + x0t - 

(25)\P = I, + Y0t - 

The number 

z0 + z0t 

(t-T)a cos p dr, 

{t-T)a sin p dT, 

value 

Imax 

Iraax 
and 

is determined as follows. There is a maximum 

for t,, and In equations (25), t? = t if t < 

t > tlmax. Part of the computing *! = hmax lf 

problem is to make this decision. 

To start the computing routine, we chose the first estimate 

of p so that the direction was about 60° from the initial line, 
—;'-^ 

of sight from rocket to target. The equations of motion wej*^ 
2 2 

then integrated until E +F  began to increase. This deter- 
1 mined the first estimate of T. Then the varlatlonal equations 

(12) were used with (25) 

^ 

mz = (x0 - 

(26IV 
(6F2 - (Y0 

a cos p dt)6T + 

a sin p dt)6T.- 

rtj 
(T-t)a8in p dt 5p 

^t* 

■'0 
(T-t)a cos p dt 6p. 

To get new estimates of T,p set 

(27)  2   2 

l6P2»-P2   ' 

and solve for 6T,6p. This defines a new approximating trajec- 

tory. For this and subsequent iterations, the value of T is 

determined in this fashion, rather than by seeking a minimum 
2  2 2  2 

value for E +F . The computation is terminated when E2+F2 , 

is below a prescribed number. 



The tiajüBto^ obfc?;   ■ above oouid represent' a maximum 

or a ralnlmura value of T:' there are various ways to check,. 

One way la to dlmlnls.  ...  by an amount -6^ and calculate 

the corresponding Increment 6T. If öT/ßt, < 0, then T Is 

a.a least « rslatlv« minimum« The case where the rooket Oftn 

"dump" fuel Is not considered. If the target Is not Initially 

Incoming, then another method must be used to get the first 

estimate of T. 

8. Interception with minimum fuel consumption. 

The problem of Intercepting a ballistic target with mini- 

mum fuel consumption is discussed here for an incoming target. 

As in section 7 the equations of motion used are those for 

constant gravity. 

For interception, the. two equations must be satisfied 

^0 + X0T = (T-t)a cos p dt 

{28)1 

V 0 + V = 
rh 

(T-t)a sin p dt 

as in the preceding section.  There are three parameters 

p,t1,T and only two equations so there is one degree of free- 

dom in the choice of the trajectory.  The third equation is 

obtained from the condition dt^/dT =* 0, as follows. Consider 

two neighboring interception trajectories, each satisfying (28). 

On the second the values p,t1,T are replaced by p+ßp^+et,, 

T+6T. Since both trajectories satisfy equation (28), 

.   "*! 
Ax« -    a cos p dt)5T - (T-t.. )a(t, )cos p 6t, 

JQ 111 

(29) < 

(T-t)a sin p dt 6p = 0 

(t0- J  a sin p dt)6T - (T-t, )a(t,)8ln p 6t, 

-   (T-t)a cos p dt 6p = 0 
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When 6p lg eliminateds, the equation results 

(30) .L(X0 - i . a cos p dt)cos p + (Y0 -    a sin p dt) sin p]6T 

{T-t1)a(t1)öt1 = 0 . 

The oase where ^ = T is an extreme case and will be ex- 

cluded from consideration here. For a minimum value of t 
■ ■       ft. /-t 1' 

1        .       •   I 1 

a cos p dt)cos p + (Y ♦-    a sin p dt)sin p = 0. (3U (X0 - 
0 "  ;o 

In formal calculus of variations, this is.a transversal condition. 

Since the terms in parentheses are the components of the relative 

velocity vector for t > t1, this condition may be interpreted 

as the condition that the relative velocity be perpendicular 

to the direction of thrust, for t > t^  If the target follows 

a known maneuver, this condition may hold only at time T. 

Computational'routine. Choose p so that the direction of 

thrust is perpendicular to the initial line'of sight. As before, 

set 
r^ 

E =X0 +X0t > (t-T)a cos p dr 

(25) 

Y0 + Y0t " (t-T)a sin p dT » 

and guess t^  T may be either be determined from- p , or 

because the routine was set up from the preceding problem, 

•we computed E +P  until it began to increase to get the first. 

estimate of T.       , 

From equation (30), a new value for p was obtained, and 

hence 6p. Then from the equations 

rt, '■■ ' ;-.;. 

ftE  = (X0 - 

(3 ) 

a cos p dtJ6T - (T-t^aU^cos p 6t, : 

+    (T-t)a sin p dt 6p 
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(32) 1     . • 

\(>7 = (Y0-    J    a sin p, dt)6T - (T-t^aCt!)     ' 

sin p öti 

(T»t)a cos p dt öp  . 

for the variations and from 
r 6E = -E 

(27) { 
L 6F = -F  , 

6^,61 are determined. The value of T is determined 

from (27) for subsequent iterations, rather than from 

the condition that E2+F2 is a minimum0 The value for 

p is determined each time from (31) and then 6p, this 

value being used in (32)to reduce it to two equations in 

two unknownso 

9» Comments, other problemso 

The above method of solution applies generally to 

problems wherein the velocity is not involved at the ter- 

minal point„ There is also a restriction that T be not 

too large if the linearized gravitational acceleration is 

used0 In these cases, R is always a decreasing function 

of t, vanishing for t = T, and the acceleration is 

then always to be applied initially0 

There is a growing awareness that problems in cal- 

culus of variations require the maximization of an in- 

tegral, and that this in turn requires the maximization 

Of an integrando The usual treatment of isoperimetric 

problems (see Mar genau and Murphy [l], p,, 204) suggests 

thiSo In formal calculus of variations this is done by 

an e-6 procedure, but, particularly in the case of 

linear differential equations it can often be done more 

easily directly. The concept of miximizing the integral 

has. received considerable impetus recently due particularly 

to papers by Pontrjagin [2],[3]0 The author first became 

aware of it from a paper by Emerson [4], and the paper of 

■MiMWMuanu 
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Breakwell[s] brings out this property of extremals. The Integral 

in (18) is the functional of Pontrjagln, and the determination 

of Cjti,! effects the construction of the functional. 

The philosophy of solution here Is that one may obtain a 

solution by simple considerations of this maximizing principle, ' 

and then verify that it is the solution. It should be observed 

that the proof given actually only deals with the nature of the 

extremals; the interrelations between the extremals and the 

manifolds whereon the terminal point lies are more complicated, 

and we have only discussed condi'tions for a stationary value. 

For those interested in classic calculus of variations, 

the condition 1 - cos (pi?) ^ o is the Weierstrass condition 

for the steering. The strict inequality is of course never satis- 

fied for all values of P, since cos(p^P) is periodic, but for 

practical purposes it is always satisfied since values of p 

which differ by 2*    are equivalent. 

Comments on computation. The integrals were expressed a^ 

differential equations and the system was integrated by^Runge- 

Kutta routine. It was selected for convenience in programming, ' 

with no attempt to attain speed. Each iteration, to obtain an 

approximating trajectory, requires about one second on the CDC 

1604. The squared error E^F* tended to diminish by a factor 

of 60-60 each time. The routine was assumed to have converged ' . 

when E2fF2 became lessithan I04(ft2) in the examples. A 

.further criterion should be cincluded corresponding to equation 

(31) but in the examples run, which could be checked, it was hot 

found to be necessary, probably due to the fact that in this 

problem, the values for the angle seem to "converge rapidly". 

It usually took three to six seconds to determine a trajectory. 

Some trajectories were continued indefinitely to obtain an 

estimate of the accuracy of the routine. In the examples run, i 

the range was a few hundred thousand feet, the time of flight 

about forty seconds and the initial acceleration of the rocket 

due to thrust about 6 g . The terminal squared error , E^+F» 

reduced directly to about 10"10(ft8)o 
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An interesting  convergence  problem was encountered in the 
problem of interception in minimum time0    The routine to determine 
the trajectory was only for  an extreme value of    T„    It seemed 
obvious that for some values of the first estimates for    c    or 
tan p , a minimum valu« of    T    would ba obtained, and for 
other first estimates,   a maximum value of    To    Consequently 
a series of trajectories were run, with various first estimates 

for    p,    namely    0,^/6,^/3,^/2,2^/3,5^/6,^.    The value of    p 
associated with minimum    T    was about 1„6,  and with maximum    T, 
3,2 (radians).    For the initial estimates    p = 0,Tr/6,ir/3,Tr/2, 
2n-/3,     the routine converged directly to the value    p = 1.6, 
For the initial value    p = ir,  the routine converged directly 
to    p = 3,2,     For the initial estimate    p = ÖTr/6,  the routine 
did not appear to converge initially, but the  successive 
estimates of    p    varied in a random fashion.    Finally    p    came 
close to 14,17'   and converged  to  this value,  which is    le6+4Tr, 
The method of solution is essentially a Newton's method,  and 
this is a typical behavior when the starting values are not 
near enough to the desired root. 

These problems are among the simplest in the calculus of 
variations since the equations are linear in the dependent varia- 
bles.    The use of    a    rather than the mass simplifies the dif- 
ferential, equations further.    It can be shown in several problems 
that if the time when the fuel is to be used is not specified, 
then it is to be used when  the magnitude of a vector,,    R    in 
this case,  exceeds a certain value (this value to be determined), 
and the fuel is to be used at the minimum rate whenever    R    Is 
below the value.    It is not known whether this relation is 
general or notj no covmterexamples are known to the authors. 

The procedures for solution, using the adjoint system, can 
be applied to non-linear problems equally well, though no simple 
complete proofs exist corresponding to the ones given here. In 
This.case the adjoint system is adjoint to the system of varia- 
tional equations for the dependent variables, rather than the 
original system. A report is forthcoming on this; see also the 
paper by Breakwell [6],  though he does not treat the case where 
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a is linear in the fuel consumption rate. The steering equa- 

tion is probably first due to Lawden in published reports (see 

[6] for references). The method of calculating differential.;;; 

is essentially that which Bliss-formulated in Ballistics'(sä?! 

[7], Chapter V, for introductory theory, and p. 125, for early 

pertinent references),. The theory is from lectures given at 

Boeing in July 1960 on the applications of the adjoint system 

in control. An appendix is planned, giving the computational 

•details for this problem. 

* 
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Erratum 

The upper limit, of the last integral in equation (19) should be 

ti, not T. 
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